Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 165(8): 852-862, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31140968

RESUMO

Annexins are multifunctional proteins that bind to phospholipid membranes in a calcium-dependent manner. Annexins play a myriad of critical and well-characterized roles in mammals, ranging from membrane repair to vesicular secretion. The role of annexins in the kingdoms of bacteria, protozoa and fungi have been largely overlooked. The fact that there is no known homologue of annexins in the yeast model organism Saccharomyces cerevisiae may contribute to this gap in knowledge. However, annexins are found in most medically important fungal pathogens, with the notable exception of Candida albicans. In this study we evaluated the function of the one annexin gene in Cryptococcus neoformans, a causative agent of cryptococcosis. This gene CNAG_02415, is annotated in the C. neoformans genome as a target of calcineurin through its transcription factor Crz1, and we propose to update its name to cryptococcal annexin, AnnexinC1. C. neoformans strains deleted for AnnexinC1 revealed no difference in survival after exposure to various chemical stressors relative to wild-type strain, as well as no major alteration in virulence or mating. The only alteration observed in strains deleted for AnnexinC1 was a small increase in the titan cells' formation in vitro. The preservation of annexins in many different fungal species suggests an important function, and therefore the lack of a strong phenotype for annexin-deficient C. neoformans indicates either the presence of redundant genes that can compensate for the absence of AnnexinC1 function or novel functions not revealed by standard assays of cell function and pathogenicity.


Assuntos
Anexinas/genética , Cryptococcus neoformans , Animais , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas , Genes Fúngicos , Camundongos , Fenótipo , Filogenia , Virulência
2.
Artigo em Inglês | MEDLINE | ID: mdl-28031206

RESUMO

Cryptococcus neoformans is an environmentally ubiquitous fungal pathogen that primarily causes disease in people with compromised immune systems, particularly those with advanced AIDS. There are estimated to be almost 1 million cases per year of cryptococcal meningitis in patients infected with human immunodeficiency virus, leading to over 600,000 annual deaths, with a particular burden in sub-Saharan Africa. Amphotericin B (AMB) and fluconazole (FLC) are key components of cryptococcal meningitis treatment: AMB is used for induction, and FLC is for consolidation, maintenance and, for occasional individuals, prophylaxis. However, the results of standard antifungal susceptibility testing (AFST) for AMB and FLC do not correlate well with therapeutic outcomes and, consequently, no clinical breakpoints have been established. While a number of explanations for this absence of correlation have been proffered, one potential reason that has not been adequately explored is the possibility that the physiological differences between the in vivo infection environment and the in vitro AFST environment lead to disparate drug susceptibilities. These susceptibility-influencing factors include melanization, which does not occur during AFST, the size of the polysaccharide capsule, which is larger in infecting cells than in those grown under normal laboratory conditions, and the presence of large polyploid "titan cells," which rarely occur under laboratory conditions. Understanding whether and how C. neoformans differentially expresses mechanisms of resistance to AMB and FLC in the AFST environment compared to the in vivo environment could enhance our ability to interpret AFST results and possibly lead to the development of more applicable testing methods.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cápsulas Fúngicas/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Melaninas/biossíntese , Anfotericina B/farmacologia , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Farmacorresistência Fúngica/fisiologia , Fluconazol/farmacologia , Cápsulas Fúngicas/fisiologia , Polissacarídeos Fúngicos/biossíntese , Proteínas Fúngicas/biossíntese , Infecções por HIV/complicações , Infecções por HIV/microbiologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Melaninas/genética , Meningite Criptocócica/complicações , Meningite Criptocócica/microbiologia , Meningite Criptocócica/patologia , Meningite Criptocócica/virologia , Testes de Sensibilidade Microbiana , Pigmentação/fisiologia , Poliploidia
3.
Antimicrob Agents Chemother ; 60(4): 2528-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26787697

RESUMO

Thein vitroactivities of the novel fungal Cyp51 inhibitor VT-1129 were evaluated against a large panel ofCryptococcus neoformansandCryptococcus gattiiisolates. VT-1129 demonstrated potent activities against bothCryptococcusspecies as demonstrated by low MIC50and MIC90values. ForC. gattii, thein vitropotency was maintained against all genotypes. In addition, significantly lower geometric mean MICs were observed for VT-1129 than for fluconazole againstC. neoformans, including isolates with reduced fluconazole susceptibility.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Drogas em Investigação/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Piridinas/farmacologia , Esterol 14-Desmetilase/metabolismo , Tetrazóis/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Antifúngicos/síntese química , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/enzimologia , Cryptococcus gattii/genética , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Farmacorresistência Fúngica/genética , Drogas em Investigação/síntese química , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genótipo , Testes de Sensibilidade Microbiana , Piridinas/síntese química , Esterol 14-Desmetilase/genética , Tetrazóis/síntese química
4.
Antimicrob Agents Chemother ; 59(2): 1030-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451046

RESUMO

Candida parapsilosis is the second or third most common cause of candidemia in many countries. The Infectious Diseases Society of America recommends fluconazole as the primary therapy for C. parapsilosis candidemia. Although the rate of fluconazole resistance among C. parapsilosis isolates is low in most U.S. institutions, the resistance rate can be as high as 7.5%. This study was designed to assess the mechanisms of fluconazole resistance in 706 incident bloodstream isolates from U.S. hospitals. We sequenced the ERG11 and MRR1 genes of 122 C. parapsilosis isolates with resistant (30 isolates; 4.2%), susceptible dose-dependent (37 isolates; 5.2%), and susceptible (55 isolates) fluconazole MIC values and used real-time PCR of RNA from 17 isolates to investigate the regulation of MDR1. By comparing these isolates to fully fluconazole-susceptible isolates, we detected at least two mechanisms of fluconazole resistance: an amino acid substitution in the 14-α-demethylase gene ERG11 and overexpression of the efflux pump MDR1, possibly due to point mutations in the MRR1 transcription factor that regulates MDR1. The ERG11 single nucleotide polymorphism (SNP) was found in 57% of the fluconazole-resistant isolates and in no susceptible isolates. The MRR1 SNPs were more difficult to characterize, as not all resulted in overexpression of MDR1 and not all MDR1 overexpression was associated with an SNP in MRR1. Further work to characterize the MRR1 SNPs and search for overexpression of other efflux pumps is needed.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fluconazol/farmacologia , Candida/genética , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Testes de Sensibilidade Microbiana
5.
Curr Fungal Infect Rep ; 8(4): 243-248, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29780439

RESUMO

Echinocandins are the newest antifungal agents approved for use in treating Candida infections in the US. They act by interfering with 1,3-ß-D-glucan synthase and therefore disrupt cell wall production and lead to Candida cell death. There is no intrinsic resistance to echinocandins among Candida species, and isolates from historic collections archived before the release of the echinocandins show no resistance. Resistance to the echinocandins remains low among most Candida species and ranges overall from 0-1%. Among isolates of Candida glabrata, the proportion of resistant isolates is higher and has been reported to be as high as 13.5% in at least one hospital. Antifungal resistance is due to specific amino acid mutations in the Fksp subunit(s) of the 1,3-ß-D-glucan synthase protein which are localized to one of two hotspots. These mutations are being recognized in isolates from patients who have failed echinocandin therapy, and often lead to a poor outcome. While the future looks bright for the echinocandins against most Candida species, C. glabrata remains a species of concern and resistance rates of C. glabrata to the echinocandins should be monitored closely.

6.
PLoS One ; 8(9): e74737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019979

RESUMO

BACKGROUND: Cryptococcusgattii infections are being reported in the United States (US) with increasing frequency. Initially, US reports were primarily associated with an ongoing C. gattii outbreak in the Pacific Northwest (PNW) states of Washington and Oregon, starting in 2004. However, reports of C. gattii infections in patients from other US states have been increasing since 2009. Whether this is due to increasing frequency of disease, greater recognition within the clinical community, or both is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: During 2005-2013, a total of 273 C. gattii isolates from human and veterinary sources in 16 US states were collected. Of these, 214 (78%) were from the Pacific Northwest (PNW) and comprised primarily the clonal C. gattii genotypes VGIIa (64%), VGIIc (21%) and VGIIb (9%). The 59 isolates from outside the PNW were predominantly molecular types VGIII (44%) and VGI (41%). Genotyping using multilocus sequence typing revealed small clusters, including a cluster of VGI isolates from the southeastern US, and an unrelated cluster of VGI isolates and a large cluster of VGIII isolates from California. Most of the isolates were mating type MATα, including all of the VGII isolates, but one VGI and three VGIII isolates were mating type MATa. CONCLUSIONS/SIGNIFICANCE: We provide the most comprehensive report to date of genotypic diversity of US C. gattii isolates both inside and outside of the PNW. C. gattii may have multiple endemic regions in the US, including a previously-unrecognized endemic region in the southeast. Regional clusters exist both in California and the Southeastern US. VGII strains associated with the PNW outbreak do not appear to have spread substantially beyond the PNW.


Assuntos
Criptococose/epidemiologia , Cryptococcus gattii/isolamento & purificação , Genótipo , Animais , Criptococose/veterinária , Criptococose/virologia , Cryptococcus gattii/genética , Humanos , Noroeste dos Estados Unidos/epidemiologia , Filogenia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...